Changes of hydraulic conductivity during dehydration and rehydration in Quercus serrata Thunb. and Betula platyphylla var. japonica Hara: the effect of xylem structures.

نویسندگان

  • Mayumi Ogasa
  • Naoko Miki
  • Ken Yoshikawa
چکیده

Xylem cavitation and its recovery were studied in 1-year-old stems of ring-porous Quercus serrata Thunb. and diffuse-porous Betula platyphylla var. japonica Hara. The Q. serrata had 5-100 microm vessel diameter in the functional current xylem and 5-75 microm in nonconducting 1-year-old xylem; B. platyphylla had a narrower range of vessel diameters of 5-55 microm and more than double the number of vessels in both functional growth rings. Although hydraulic conductivity of Q. serrata appeared to decrease after release of moderate water stress of a half loss of native hydraulic conductivity--about -2 MPa in xylem water potential--no significant recovery of hydraulic conductivity was observed, probably because of intraspecific variation in vessel diameter distribution, which induced variable vulnerability to cavitation. Furthermore, in terms of xylem anatomy, larger and more efficient vessels of the current xylem did not show obvious refilling. In B. platyphylla, after release of water stress, rapid (1 h) recoveries of both hydraulic conductivity and water potential were apparent after rewatering: so-called 'novel refilling'. During that time, a high degree of vessel refilling was observed in both xylems. At 12 h after rewatering, embolized vessels of the current xylem had refilled completely, although about 20% of vessels were still embolized in 1-year-old xylem. This different pattern of vessel refilling in relation to xylem age for B. platyphylla might be attributable to structural faults in the 1-year-old xylem, such as pit degradation or perhaps xylem aging itself. Results show that Q. serrata performs water conduction using highly efficient large vessels instead of unclear vessel refilling. In contrast, B. platyphylla transports water via less efficient but numerous vessels. If cavitation occurs, B. platyphylla improves water conduction by increasing the degree of vessel refilling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antioxidant and anticancer activity of extract from Betula platyphylla var. japonica.

The antioxidant and anticancer properties of a medicinal plant, Betula platyphylla var. japonica were investigated. The total methanol extract of B. platyphylla var. japonica had protective effects against hydrogen peroxide (H2O2) in the Chinese hamster lung fibroblast (V79-4) cell line and induced apoptotic cell death in human promyelocytic leukemia (HL-60) cells, a cancer cell line. B. platyp...

متن کامل

Xylem ray parenchyma cells in boreal hardwood species respond to subfreezing temperatures by deep supercooling that is accompanied by incomplete desiccation.

It has been accepted that xylem ray parenchyma cells (XRPCs) in hardwood species respond to subfreezing temperatures either by deep supercooling or by extracellular freezing. Present study by cryo-scanning electron microscopy examined the freezing responses of XRPCs in five boreal hardwoods: Salix sachalinensis Fr. Schmit, Populus sieboldii Miq., Betula platyphylla Sukat. var japonica Hara, Bet...

متن کامل

Loss of hydraulic conductivity due to water stress in intact juveniles of Quercus rubra and Populus deltoides.

Despite many studies of the percent loss of hydraulic conductivity in excised branches, there is doubt as to whether cutting stems in air introduces unnatural embolism into the xylem at the cut surface. To address this question, hydraulic conductivity was measured in seedlings of northern red oak (Quercus rubra L.) and rooted scions of eastern cottonwood (Populus deltoides Bartr. ex Marsh.) tha...

متن کامل

Testing for ion-mediated enhancement of the hydraulic conductance of the leaf xylem in diverse angiosperms

Replacing ultra-pure water solution with ion solution closer to the composition of natural xylem sap increases stem hydraulic conductance by up to 58%, likely due to changes in electroviscosity in the pit membrane pores. This effect has been proposed to contribute to the control of plant hydraulic and stomatal conductance and potentially to influence on carbon balance during dehydration. Howeve...

متن کامل

The dynamics of carbon stored in xylem sapwood to drought-induced hydraulic stress in mature trees

Climate-induced forest die-off is widespread in multiple biomes, strongly affecting the species composition, function and primary production in forest ecosystems. Hydraulic failure and carbon starvation in xylem sapwood are major hypotheses to explain drought-induced tree mortality. Because it is difficult to obtain enough field observations on drought-induced mortality in adult trees, the curr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Tree physiology

دوره 30 5  شماره 

صفحات  -

تاریخ انتشار 2010